The Institution of **StructuralEngineers**

Conceptual design of buildings

Conceptual design of buildings

Authors

J Norman	PhD MEng CEng MICE FHEA (University of Bristol) Lead
O Broadbent	MEng MChem (Constructivist Ltd)
J F Carr	BEng MPhil CEng FIStructE FHEA (University of Sheffield and Jon Carr Structural Design)
R De'Ath	MEng CEng MIStructE MICE (University of Bristol and Arup)
R Harpin	BEng CEng MIStructE (University of Sheffield)
G Knowles	BEng CEng MIStructE (University of Bath)
I Lloyd	PhD MSc(Eng) BSc(Geol) CGeol FGS FHEA (University of Bristol)

Reviewers

G Evans	BSc(Hons) PhD CEng FICE FIStructE MBCS (Constructex) Technical Products Panel
T Ibell	FREng PhD BSc(Eng) CEng FIStructE FICE FHEA (University of Bath)
J Lord	MEng CEng MICE (Whitby Wood)
N Russell	BSc CEng FIStructE FICE FASCE MCMI (Perega)

Publishing

L Baldwin	BA(Hons) DipPub (The Institution of Structural Engineers)
R Thomas	BA(Hons) MCLIP (The Institution of Structural Engineers)

Published by The Institution of Structural Engineers International HQ, 47–58 Bastwick Street, London EC1V 3PS, United Kingdom T: +44(0)20 7235 4535 E: mail@istructe.org W: www.istructe.org

First published (version 1.0) April 2020 This version 1.1 (published April 2021) includes minor amendments/additions to the following pages: 45, 75, 78, 89, 95, 170, 172, 174, 180, 191, 217, 222 and 250

978-1-906335-42-7 (print) 978-1-906335-43-4 (pdf)

© 2020 The Institution of Structural Engineers

The Institution of Structural Engineers and the members who served on the Task Group which produced this *Guide* have endeavoured to ensure the accuracy of its contents. However, the guidance and recommendations given should always be reviewed by those using the *Guide* in light of the facts of their particular case and any specialist advice. No liability for negligence or otherwise in relation to this *Guide* and its contents is accepted by the Institution, its servants or agents. **Any person using this** *Guide* **should pay particular attention to the provisions of this Condition**.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of The Institution of Structural Engineers, who may be contacted at: 47–58 Bastwick Street, London EC1V 3PS, United Kingdom.

Contents

Notation (for Chapter 10)		vii	
Fore	eword		ix
The	autho	ors	х
Ack	nowle	dgements	xii
1	Introdu	ction	1
1.1	From bl	ank page to complete building	2
1.2	The importance of 'good' concept design		
1.3	Building	design process and the RIBA stages	4
1.4		use this book	5
1.5		ndred years of design experience	7
1.6	'Good e	-	7
2		have ideas	8
2.1	-	engineers need good ideas?	8
0.0	2.1.1 Table (Four principles for idea generation	8
2.2	100IS TC 2.2.1	r idea generation Information in the moment	10 10
	2.2.1	Information over time	10
2.3		portance of divergent thinking	13
2.4		ng your subconscious	16
2.5	Ideas through conversation		17
2.6	Iterative creative thinking		18
2.7	Conclus	sion	20
2.8	Practica	d	21
3	Sketchi	ing	23
3.1	The importance of drawing		23
3.2	Types of sketching		24
	3.2.1	Concept sketches	24
	3.2.2	Sketching in meetings (coordination sketches)	24
	3.2.3	Sequence assumed in design (sketches for the contractor)	25
	3.2.4	On-site sketching	26
	3.2.5	Details sketching	27
	3.2.6	Sketching for reports/competition work	27
	3.2.7	Sketching to solve a problem	29
	3.2.8	Sketching from other disciplines	29
	3.2.9	Create a drawing habit	29
3.3	Tools fo	or drawing	31
	3.3.1	Paper and pencil	32
	3.3.2	Line types	32

	3.3.3	Hatching	34
	3.3.4	Touchscreen and stylus	35
3.4	Top tips a	nd practical guide to drawing	35
3.5	Interviews	with the professionals	37
3.6	Workshops		
3.7	Practical: 1	100 things to draw in one minute	41
3.8	Further info	ormation and inspiration	42
4	Communi	cation	43
4.1	Learn to te	ell stories in a way other people can understand	44
4.2	Hitting the	mark - making your communication intentionally targeted	44
4.3	Emails		47
4.4	Minutes		48
4.5	Connect		48
4.6	Listen		49
4.7	Feedback		49
4.8	Suggested	further reading	50
5	Developin	g the brief — "You want me to design what?"	51
5.1	What is a	brief?	52
	5.1.1	Project outcomes	53
	5.1.2	Sustainability outcomes	53
	5.1.3	Quality aspirations	55
	5.1.4	Spatial requirements	55
	5.1.5	Develop the initial project brief	55
5.2	Beyond the	e brief	56
	5.2.1	Project budget	56
	5.2.2	Other considerations	57
	5.2.3	Undertake feasibility studies - 'The importance of playing'	58
5.3	When migl	nt you need to develop a brief?	58
5.4	Brief devel	opment — taking an ill-defined brief and making sense of it	59
5.5	Using the	brief to select the solution at Stage 2	61
	5.5.1	Measuring the success of your solution	61
5.6	Having a g	JO	62
	5.6.1	Six ill-defined and poorly articulated briefs which need developing	62
5.7	Brief devel	opment – an example	63
6	Questions	we must ask	66
6.1	What if?		66
	6.1.1	Materials	67
	6.1.2	Loads	68
	6.1.3	Other 'What if?' questions	69
6.2	How much	1?	70
6.3	Where do	we start?	70

7	Geotechnical decisions		72
7.1	Introduction		72
7.2	Desk stu	ıdy	73
	7.2.1	Background research	73
	7.2.2	British Geological Survey (BGS) information	76
	7.2.3	Planning Portal data	82
	7.2.4	Other BGS data	82
	7.2.5	Site visit/walkover survey	83
7.3	Site ana	lysis	83
	7.3.1	Factors that can be used to zone sites for development	83
7.4	Ground	model and typical properties	84
7.5	Substructure scheme design		84
	7.5.1	Foundations – permissible bearing capacity for shallow foundations	84
	7.5.2	Settlement for shallow foundations	87
	7.5.3	Shallow foundation construction	89
	7.5.4	Deep foundations (piles)	89
	7.5.5	Retaining wall design	91
	7.5.6	Dewatering	93
	7.5.7	Infiltration drainage	93
	7.5.8	Pavement design	93
	7.5.9	Gas protection measures for radon, methane	94
	7.5.10	Shrinkage/swelling	94
	7.5.11	Contamination	94
8	Develop	ning a concept	95
8.1	The six key decisions you need to make simultaneously		
	8.1.1	Decision 1: Influence of ground conditions	95
	8.1.2	Decision 2: Material selection	97
	8.1.3	Decision 3: Structural system	101
	8.1.4	Decision 4: Grids and structural layouts	104
	8.1.5	Decision 5: Spans of floor and roof structures	108
	8.1.6	Decision 6: On- or off-site construction	112
8.2		al layouts	114
8.3		- where structural engineers get to have some fun!	118
8.4		ent joints, lateral stability and robustness	121
8.5			121
8.6			121
9	Stability, robustness and movement joints		122
9.1	Lateral s	-	122
	9.1.1	Horizontal loads	123
	9.1.2	Stability design	125
9.2	Element	design (and when you can ignore it)	133
9.3	Robust (design and the pitfalls to be avoided	134
9.4	A brief guide to disproportionate collapse and when it needs to be considered 13		

10	Concept design calculations 14		
10.1	Introduction		140
10.2	Pre-calculation checks - load paths and construction sequences		140
	10.2.1	Load paths	140
	10.2.2	Construction sequences	142
10.3	Empirical	design – does it look right?	143
10.4	Concept	design calculations	151
	10.4.1	Establishing the loads	152
	10.4.2	Determining the forces - approximate structural analysis	152
	10.4.3	Sizing the elements	156
	10.4.4	Typical elements	158
10.5	Documer	ting the calculations	185
10.6	Checking	the calculations	186
10.7	Next step	S	187
11	Practical	examples of three generic building types - with two potential solutions for each	189
11.1	Introducti	on and design philosophy	189
11.2	Ten-storey office building with open-plan layout		
11.3	30m spa	n single-storey building with open-plan layout	214
11.4	Three-storey residential building/apartment block with cellular layout		232
11.5	Suggested reading		
12	What to	produce at the end of the conceptual design process	235
12.1	Stage 2 report — the only output our client looks at		235
	12.1.1	The importance of communicating the design	235
	12.1.2	How to make reports accessible and professional $-$ a 'style guide'	236
	12.1.3	Content - what's in and what's out?	239
12.2	Drawings		245
	12.2.1	BIM	245
	12.2.2	What to include	245
12.3	Cost pro	bosal	247
12.4	Programme and 'information required schedule'		249
12.5	Specifica	tion	249
12.6	Scope of	works	249
	References		250
	The from	t cover image	254

Notation (for Chapter 10)

Term	Definition
$A_{\rm c}$	Cross-sectional area of concrete
$A_{\rm chord}$	Cross-sectional area of truss chord
\mathcal{A}_{f}	Area of flange
As	Cross-sectional area of reinforcement
A_{v}	Shear area
b	Width of section
bf	Width of flange
Cf	Outstand length of flange
d	Depth of truss
$d_{\rm eff}$	Effective depth
d_{sect}	Depth of section
δ	Deflection
е	Eccentricity
E	Modulus of elasticity
E _{0.05}	Fifth percentile value of modulus of elasticity
$E_{\rm min}$	Minimum value of modulus of elasticity
$f_{\rm all}$	Allowable stress in steel section
f _{ck}	Characteristic compressive cylinder strength of concrete
<i>f</i> _{c,0,d}	Design compressive strength parallel to grain
$f_{\rm c,0,k}$	Characteristic compressive strength parallel to grain
f _{m,d}	Allowable bending strength parallel to grain
f _{m,k}	Characteristic bending strength parallel to grain
f_y	Yield strength of steel
f _{yk}	Characteristic tensile strength of reinforcement
$F_{\rm b,0,d}$	Design buckling resistance parallel to grain
$F_{\rm c,0,d}$	Design compressive resistance parallel to grain
$g_{ m d}$	Design uniformly distributed load due to permanent loads
Υm	Partial material factor
h	Height of arch
$h_{\rm w}$	Height of web
i _y	Radius of gyration, y-y axis
1	Second moment of area
l _{truss}	Second moment of area of truss
k	Modification factor for timber section
$k_{\rm yy},k_{\rm zy}$	Interaction factors for steel columns
L	Span length
$L_{\rm cr}$	Buckling length
λ	Slenderness
λ_{rel}	Relative slenderness
$M_{\rm b,Rd}$	Design lateral torsional buckling resistance
$M_{\rm Ed}$	Design bending moment

$M_{\rm c,z,Rd}$	Design moment resistance, z-z axis
$N_{\rm b,Rd}$	Design buckling resistance
$N_{\rm c,Rd}$	Design resistance to axial compression
$N_{\rm cr}$	Euler buckling resistance
$N_{\rm Ed}$	Design axial force
$N_{\rm c,Ed}$	Design axial compression force
$N_{\rm t,Ed}$	Design axial tension force
$N_{\rm pl,Rd}$	Design plastic resistance to axial forces
q_{d}	Design uniformly distributed load due to variable loads
r	Radius of circular arch
$R_{\rm H}$	Horizontal reaction
R_{V}	Vertical reaction
S	Swept length of arch
t _f	Thickness of flange
t _w	Thickness of web
$V_{\rm Ed}$	Design shear force
$V_{\rm Ed}$	Design shear stress
$V_{\rm pi,d}$	Design plastic shear resistance
$V_{\rm Rd,c}$	Design shear resistance
Wd	Uniformly distributed load (UDL)
$W_{\rm d}$	Design point load
$W_{\rm el}$	Elastic modulus
У	Distance from neutral axis to centroid of member

z Lever arm of internal forces

Foreword

I wish I had this book when I was a student! It would have put into perspective so beautifully at the time what it really is to be a structural engineer. To dream a little and have ideas. To rely on deep technical skills to prioritise some of these ideas, and to work them up into reality such that the outcome enhances somebody's life. Wonderful. This is structural engineering, and a reflection of its power. This book oozes with reasons why our profession is so special.

It lays out the story for students and graduates about the realities of the day job right through to our contributions to humanity, and the excitement which these responsibilities provide. It is written by highly experienced authors whose communication skills ensure total accessibility to students and graduates in explaining clearly the entire process of the creative structural design of a building.

The aspect of the book which I like most is the desire by the authors for the book to become outdated quickly. Our climate emergency has placed our profession in the spotlight, given the embodied-carbon issues inherent in construction. This book reflects current best practice, but it also asks the big 'What if?' questions. What if we had no cement? What if we had to design according to an inventory-constrained palette of re-used components? What if we could rely on technology to mitigate risk of overload in buildings? If you ever wanted students and graduates to make the link between our commitments to the climate emergency 'declare' initiatives and the day job, the 'What if?' questions highlighted in this book provide just this inspiration. It takes our profession out of the spotlight and into the limelight.

This book reflects the extraordinary skills which structural engineers possess, and how they might think about deploying them. Additionally, it challenges us to be even better in the future. The guidance is priceless for those entering our fabulous profession.

Prof. Tim Ibell Department of Architecture and Civil Engineering, University of Bath, UK

The authors

James Norman – University of Bristol

James has 12 years design experience working for Ramboll and Integral Engineering Design. He has nine years' academic experience, including a PhD at the University of Bristol. He has designed buildings out of mud, timber, steel and lots and lots of concrete, and worked for a year on the facade of the extension to the Tate Modern. James authored *Structural timber elements: a pre-scheme design guide* and is Associate Professor of Sustainable Design.

Oliver Broadbent – Constructivist Ltd

Oliver is Founder of Constructivist Ltd, and specialises in helping engineers develop their creativity. He is a Royal Academy of Engineering Visiting Professor at Imperial College and hosts Eiffel Over, a podcast about engineering, creativity and practical philosophy.

Jon Carr – University of Sheffield and Jon Carr Structural Design Jon is a Senior University Teacher in Structural Design at the University of Sheffield, as well as running Jon Carr Structural Design, as a sole practitioner. Jon previously worked for Anthony Hunt Associates from 1988 to 2010, specialising in education and sports and leisure sector projects. His notable projects include the KCOM Stadium in Hull and, at the other end of the scale, the 'Hen House' in Sheffield.

Rachael De'Ath – University of Bristol and Arup

Rachael has more than 16 years' design experience working for Arup, and has recently joined the University of Bristol to teach design, alongside her work in industry. She prefers working on re-use projects, where the existing structure is creatively re-imagined into something new. She was named as one of the Women's Engineering Society 'Top 50 female engineers' in 2018.

Richard Harpin – University of Sheffield

Richard is a University Teacher in Structural Design at the University of Sheffield. He was previously a Lecturer in Structural Engineering and Architecture at Nottingham Trent University and, before this, spent 16 years working for Arup. Significant projects include Citibank European Headquarters at Canary Wharf, Pallant House Gallery in Chichester and the School of Theatre, Film and Television at the University of York.

Gavin Knowles – University of Bath

Gavin studied Civil Engineering at Oxford Brookes University and graduated in 2001. Since working in practice he gained his professional chartership with the Institution of Structural Engineers. He was an Associate with Bath-based engineering firm Integral Engineering Design, and is now a full-time lecturer at the University of Bath. Gavin's previous projects include many education and office buildings, along with conservation and refurbishment projects, interweaved with diverse structures, such as rammed chalk-walled houses, recycled material stages at WOMAD Festival and the odd sculpture.

Isobel Lloyd – University of Bristol

Isobel has 20 years' design experience with BuroHappold, Atkins and Mott MacDonald, mostly in the UK but also in Europe, the Middle East and Hong Kong. She has six years' experience of working for various contractors including ground investigation companies, and has spent eight years in academia. Significant projects include the Globe Theatre, Royal Armouries Museum in Leeds, Valentine Bridge in Bristol, Extension to British Library and many school buildings.

Acknowledgements

Permission to reproduce the following has been obtained, courtesy of these individuals/organisations:

Cover © Simon Smith (Smith & Wallwork) Figures 3.4, 3.9 and 5.1 © Integral Engineering Design Figures 3.8 and 3.24 © Hatcher Prichard Architects Figure 3.10 © Redenbrow.com Figures 3.20 and 5.3 © David Grandorge Figures 3.25–3.28 © E3 Consulting Figures 4.10, 8.1, 10.5 and 10.10a-b © Arup Figures 7.1 and 7.2 Contain British Geological Survey materials © UKRI [2020]. Base mapping is provided by ESRI Figures 7.3–7.5 Contain British Geological Survey materials © UKRI [2020] accompanying the record Figure 7.8 Foundation design and construction, M.J. Tomlinson and R. Boorman, 7th ed, 2001. Reprinted by permission of Pearson Business Figures 8.2, 8.27-8.28 and 8.35-8.37 © Bond Bryan Figures 8.3 and 8.4 © steelconstruction.info Figure 8.5 © Waugh Thistleton Architects Figure 8.6 © Curtins Figure 8.7 © Dema Formwork Figure 8.8 © Daniel Shearing (Photographer) Figure 8.9 © Hadley Steel Framing Figure 8.10 © K K Law (Photographer) Figure 8.11 © Acton Ostry Architects Figure 8.18 © Robert Bird Group Figure 8.20 © Jon Shanks Figures 8.21 and 8.22 © F P McCann Figure 8.23 Courtesy of Bentley SIP Systems Figure 8.24 © Portakabin Figure 8.25 © Kier Figures 8.26 and 8.33 © Tony Hunt Figures 8.29-8.30, 8.32 and 8.34 © SKM (now Jacobs) Figures 9.6 and 12.7a-b © Ramboll Figure 10.2a C Dominic Beer Figures 10.2b and 10.6a-b © Stephen Fernandez (Arup) Figure 10.2c © Smith & Wallwork Figure 10.2d © MCW and CH2M (now Jacobs) Figure 10.3 © Tom Page [CC BY-SA 2.0] Figure 10.4 Courtesy of Cullinan Studio Figure 10.6c © Nottingham Trent University Figure 10.8 © K C Kong [CC BY-SA 3.0] Figure 10.9a © Tim Green [CC BY 2.0] Figure 10.14a © Vlatka Rajcic Figure 10.14b © New Steel Construction Figure 10.21 © Focchi Figure 10.32 © British Land Figure 10.39a-b © Paul Denning (Allerton Steel) Figure 12.6 © Feilden Fowles Table 7.8 © Wiley Tables 7.12 and 7.14 Foundation design and construction, M.J. Tomlinson and R. Boorman, 7th ed, 2001. Reprinted by permission of Pearson Business

Permission to reproduce extracts from British Standards is granted by BSI Standards Limited (BSI). No other use of this material is permitted. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop