UNIVERSITY OF LEEDS School of Civil Engineering

A Novel Topology For Lattice Telecommunication Towers developed through a Computational Morphogenesis Process

The**Institution** of **Structural** Engineers

2015/16 MSc

Research Grants

14.5 8.0E+6 14.4 9.5E+6

By Andreas Nicolaou MEng Civil & Structural Engineering

Supervised by Dr Konstantinos Daniel Tsavdaridis MEng (Hons) Civil, MSc, DIC, PhD, CEng, EUR ING, M.ASCE, M.IASS

1 - INTRODUCTION	2 - THE CHALLENGE	3 - STRUCTURAL TOPOLOGY	5 - MORPHOGENESIS PROCESS	8 - CONCLUSIVE
Broadcasting television and radio systems, signal- transmission for the provision of wireless internet, telecommunication and two-radio services, necessitate the use of antennas and dish-reflectors which are more economically mounted on <i>lattice</i> <i>guyed masts or self-supported (SS) towers</i> . This structures can be generally characterized as light, tall and flexible. GLOBAL INSIGHTS OF THE STRUCTURE AESTHETICS	Can we use computational structural topology optimization (STO) to create a new exoskeleton for lattice self-supported towers that will possess improved structural characteristics, high aesthetic value but at the same time maintain its functional utility? High solidity & poor aesthetic value	 > STRUCTURAL TOPOLOGY OPTIMIZATION (STO) > The tool which enables SIMP algorithm to produce skeleton structures or members with improved weight and stiffness characteristics as well as high aesthetic value. > Achieve through optimum material distribution within a 2D or 3D designed domain representing the circumference geometry of a structure. (Altair's OptiStruct) > Density plots: Red = 100% - Blue = 0%. 	OptiStruct geometry transformed to 3D line CAD model into Oasys GSA and embraced with EHS. Then compared against a <i>conventional</i> <i>tower model UA</i> (comprised of RAS members). (a)2D domain (b)Analysis output: element- density plot (c)Rendering plot (d)GSA model OT	 CONCLOSIVE REMARKS The new exoskeleton has improved weight, stiffness and other structural characteristics. High aesthetic value has been achieved due to the intriguing topology, slender form, use of EHS and not being visually distracting with dense
 The lattice morphology has been a defining characteristic. Almost as visually intrusive as they were several decades ago. Of course this depends on the solidity of the structure. Solidity will depend on the type of structural members and the exoskeleton topology. Such structures have obviously escaped the attention of Engineers and Architects. 		4 - TAPERED 2D CONCEPTUAL LAYOUT OF STO ANALYSIS Numerous optimization analyses were performed on 2D and 3D domains of different shapes. This provided the most consistent and realistic results was the fully tapered domain presented within <i>Section 5</i> . Their validity was verified against the optimal cantilever bracing (OCB) of Stromberg et al. (2012). All angles deemed to these of Stromberg's OCB.	$\mathbf{Bracing panels: bottom-top}_{5:35}$	 members. Antenna cap has been proved effective for the design. STO is effectively used to create exoskeleton structures. 9 – FUTURE WORK Test the tower under dynamic loadings (including wind
 STRUCTURAL MEMBERS Typically use right angle sections (RAS) or circular hollow sections (CHS). RAS lead to high solidity and wind drag, poor aesthetic value and eccentric connections. CHS lead to reduced solidity and wind drag, improved aesthetic value and concentrically loaded connections. Elliptical hollow sections (EHS) were rarely or never used in the past. EHS can significantly reduce the solidity of the structure in the along wind direction and can improve the aesthetic value of the tower. 	Bracing members orientation and intermediate joint Connection column-beam or column- bracing	STO ANALYSIS DETAILS DESCRIPTION: Fully tapered 2D designed domain HEIGHT: 19m (17m+2m Cap) BASE WIDTH: 4m LOADING SCENARIO: Distributed load - changed while optimizing the topology SUPPORTS : Full base fixed EDGE LINES SLOPE (17m from bottom to the cap): 1:17 FUNCTION OBJECTIVE: Weighted compliance CONSTRAINT: Volume fraction	6 - Model OT VS Model UA 6 - Model ot VS	 simulation using CFD). Wind performance and local effects when iced cross-sections. Incorporate horizontal bracings into the model to improve its torsional response. Apply the concept of deployable structures. Model UA UA OT OT Mode (Hz) (N/m) (Hz) (N/m) (a) 7.12 1.0E+6 7.41 1.9E+6 (b) 7.14 1.1E+6 7.52 1.6E+6

F N F

(a) Bending mode 1 (b) Bending mode 2 (c) Torsional mode \rightarrow (c)

Nielsen, M.G and Støttrup-Andersen, U. 2006. Advantages of using tubular profiles for telecommunication structures. In: *Tubular Structures XI Willibald, S. and Packer, J.A., 31 August/2 September, Quebec City.* Londor & Francis Group plc, pp. 45-51. Stromberg, LL., Beghini, A., Baker, F.W. and Paulino, G.H. 2012. Topology optimization for braced frames: Combining continuum and beam/column elements. *Engineering Structures.* 37(No issue number), pp. 106-124.