N/A
Standard: £9.95 + VATMembers/Subscribers: Free
Members/Subscribers, log in to access
The Structural Engineer, Volume 50, Issue 5, 1972
Mr. D. E. Thorp: I would like to give some of the main reasons that led to the final solution of the single raft over the whole area of reactor building. The raft is resting on about 30 m (100 ft) of medium sand with a relative density of about 50 to 60 per cent. I understand that little is yet known in the field of soil mechanics about stresslstrain relations within sand masses, and sophisticated analysis still assumes, I believe, a semi-infinite elastic medium. Hence the results must be treated with some reserve. Conscious of these uncertainties, we were faced with the design of superstructures whose differential settlements had to be strictly limited to avoid damage to finishes and plant. In particular, the goliath crane for the fuelling machine, which operates on a longitudinal rail system supported consecutively on the fuel handling unit, intervening steelwork and concrete pressure vessel, is particularly sensitive to undue differential settlement.
Professor J. Heyman: There is an enormous amount of new material in this paper and it is going to take us a long time to assimilate it. I would like to make one or two broad comments and not discuss the detailed results. One of the most interesting features is the use of realistic flexible joints rather than the rigid joints that were used in the previous tests. If I can summarize the test results, the beam behaviour using the flexible joints accorded pretty well with the predictions of the Joint Committee’s report, the behaviour of the columns was not so close, but the ultimate collapse loads reached by the columns were certainly on the right side-the Joint Committee’s method was conservative. All of these observations, while differing in degree, were in fact results repeated from the previous test with the rigid joints.
We wish to compliment the author for his thorough analytical and experimental investigation.